
Performance Coupling: Case Studies for Improving
the Performance of Scienti�c Applications

Jonathan Geisler Valerie Taylor

Department of Electrical and Computer Engineering

Northwestern University

Evanston, IL 60208

E-mail: fgeisler,taylorg@ece.nwu.edu

Traditional performance optimization techniques have focused on �nding

the kernel in an application that is the most time consuming and attempt-

ing to optimize it. In this paper we focus on an optimization technique

with a more global perspective of the application. In particular, we present

a methodology for measuring the interaction, or coupling, between kernels

within an application and describe how the measurements can be used to

improve the performance of scienti�c applications. We discuss four case

studies to demonstrate the use of this methodology. The �rst study in-

volves the Conjugate Gradient benchmark from the NAS Parallel Bench-

marks. The coupling measurement aided in the development of a new

hybrid data structure and corresponding algorithm that slightly increased

the performance of the program. The second study involves the Block

Tridiagonal NAS Parallel Benchmark, for which the coupling parameter

aided in revising the program to reduce the level-two cache misses by 14%.

Next, we introduce improvements to an application in the SpecJVM bench-

mark suite resulting in 41% reduction in level-one cache misses. Lastly, we

present results from the Seis application from the SPEChpc Benchmarks to

illustrate the coupling parameters that may result from large-scale scienti�c

applications.

Key Words: performance coupling, kernels, cache misses, NPB

1. INTRODUCTION

Traditional performance optimization techniques have focused on �nding the ker-

nel in a program that is the most time consuming and attempting to optimize it.

An example of such an optimization entails restructuring an algorithm to increase

data reuse (i.e., blocking), thereby reducing cache misses. It is well known that the

performance increase that is achieved when optimizing a given kernel in isolation

generally does not re
ect the performance increase that occurs when the new kernel

1

2 GEISLER AND TAYLOR

is included in the larger application [12]. This disparity in performance increase be-

tween the kernel and full application is due in part to a lack of understanding of how

the interaction, or coupling, of kernels a�ects the performance of the application.

In this paper, we present a methodology for quantifying the coupling. In partic-

ular, we measure how kernels within an application perform in isolation in contrast

to how kernels perform with nearby kernels in the application. The measurements

lead to a parameter that is a ratio between the performance of the kernels exe-

cuted together and the sum of the performance of the kernels executed in isolation.

This parameter allows the algorithm designer to know how much a kernel interacts

with other kernels in the application. With this ratio and a full understanding of

the algorithm, the designer can improve the application performance by changing

the kernel so that it can bene�t from the work done by previous kernels and/or

provide a bene�t to succeeding kernels. By understanding where performance bot-

tlenecks exist due to coupling, the algorithm designer will be able to develop more

e�cient applications that interact well between kernels, leading to overall improved

performance.

This work focuses on single processor performance because of the importance of

obtaining optimized serial codes. Amdahl's Law [1] emphasizes the importance of

improving the performance of the serial portions to obtain an overall improvement

in a parallel application. Furthermore, the SPMD programming methodology is

based on using e�cient sequential programs. The methodology generalizes to a

parallel processing framework by adding another level of interaction to represent

the interconnection network.

Within the single processor, we are looking at interaction that occurs within the

memory hierarchy. With the increasing disparity between CPU and memory per-

formance, it is important to optimize memory hierarchy usage. Also, the coupling

parameter focuses on improved cooperation between kernels. Since the cache is de-

signed to take advantage of sharing between di�erent pieces of the same program, it

is the �rst candidate for this methodology. The parameter, however, is not limited

to measuring cache performance; the coupling parameter can be applied to other

resources that are shared or reused (e.g., registers or networks).

In this paper we present four case studies that illustrate the usage of the coupling

parameter. The coupling parameter measurements aided in the development of a

new hybrid data structure and corresponding algorithm that slightly increased the

performance of the Conjugate Gradient benchmark from the NAS Parallel Bench-

marks. We achieved a reduction of 14% of level-two cache misses from the Block

Tridiagonal benchmark from the same suite. We improved the 209 db benchmark

from the SpecJVM suite by 41% less level-one cache misses. Finally, we demon-

strated small improvements in the Seis application from the SPEChpc suite.

In the next section we describe the methodology of measuring coupling parame-

ters for an application. Next, we give a simple example to demonstrate the coupling

parameter in an easy to understand context. Then we present some bene�ts of us-

ing the coupling parameter through four case studies. Finally, we present related

work and conclusions.

PERFORMANCE COUPLING CASE STUDIES 3

2. DESCRIPTION OF METHODOLOGY

This section describes our methodology and techniques for measuring coupling

for both adjacent and non-adjacent kernels. We also include a description of the

hardware architecture we got the results on.

2.1. Adjacent Coupling

The coupling parameter (cij) quanti�es the interaction between adjacent kernels

in an application. In this work, a kernel is a unit of computation that denotes a

logical entity within the larger context of an application. The unit may be a loop,

procedure, or �le depending on the level of granularity of detail that is desired from

the measurements.

To compute the parameter cij , three measurements must be taken:

1. pi is the performance of kernel i alone,

2. pj is the performance of kernel j alone, and

3. pij is the performance of kernels i and j assuming kernel i immediately preceeds

kernel j in the application.

These measurements are done in the same way as determined by the application.

For example, if the application looks like Algorithm 2.1, then we would execute

Algorithm 2.2, to measure pC , Algorithm 2.3 to measure pD, and Algorithm 2.4

to measure pCD. Similarly, we would execute Algorithm 2.5 to measure pE and

Algorithm 2.6 to measure pDE .

Algorithm 2.1 Example Application

kernel A

for i 1 to 25 do

kernel B

for j 1 to 10 do

kernel C

kernel D

end for

end for

kernel E

kernel F

Algorithm 2.2 Measure pC

for i 1 to 25 do

for j 1 to 10 do

kernel C

end for

end for

The three measurements above can improve the performance of an application

by monitoring the sharing or reuse of any resource to which the application has

access. Example resources that might be measured are di�erent levels of the mem-

4 GEISLER AND TAYLOR

Algorithm 2.3 Measure pD

for i 1 to 25 do

for j 1 to 10 do

kernel D

end for

end for

Algorithm 2.4 Measure pCD

for i 1 to 25 do

for j 1 to 10 do

kernel C

kernel D

end for

end for

Algorithm 2.5 Measure pE

kernel E

Algorithm 2.6 Measure pDE

for i 1 to 25 do

for j 1 to 10 do

kernel D

end for

end for

kernel E

PERFORMANCE COUPLING CASE STUDIES 5

ory hierarchy or processor instruction slots on multithreaded machines. This work

looks at the cache usage by measuring misses at the various levels.

It should be noted that interactions between all pairs of kernels is not necessary.

The value cij represents the direct interaction between two adjacent kernels in an

application (i.e., in the sense of the control
ow of the application). Hence, for

each unique application control path that involves N kernels, only N � 1 pairwise

interactions are measured.

In general, the value cij is equal to the ratio of the measured performance of the

pair of kernels to the expected performance resulting from combining the isolated

performance of each kernel. For the case of cache misses we expect pij to be the sum

of pi and pj if there is no interaction between kernels. Since cij is the measurement

of interaction between kernels, we compute it as the ratio of the actual performance

of the kernels together to that of no interaction: cij =
pij

pi+pj
. The summation of the

isolated performance is not applicable to all performance metrics, such as
oating

point operations per second (
op/s); a weighted average would be used in this case.

Di�erent performance metrics may require di�erent mathematical formulations for

combining the isolated performance.

We group the parameters into three sets:

� cij = 1 indicates no interaction between the two kernels, yielding no change in

performance.

� cij < 1 results from some resource(s) being shared between the kernels, pro-

ducing a performance gain (i.e., constructive coupling). This occurs when the two

kernels have lower cache misses when run together than separately.

� cij > 1 occurs when the kernels interfere with each other, resulting in a per-

formance loss (i.e., destructive coupling). This occurs when the two kernels have

higher cache misses when run together than separately.

Therefore, it should be the goal to use code that minimizes cij to achieve best

performance.

2.2. Non-adjacent Coupling

Previously, we discussed kernels that occur consecutively in the call graph of an

application. These kernels may be said to be adjacent and one would expect them

to greatly a�ect each other. Non-adjacent kernels are separated by one or more

kernels and can have coupling. In Section 4.3, we present results that indicate

measurable interaction between non-adjacent kernels.

Non-adjacent kernels can exhibit coupling despite the intermediate kernels that

execute for several reasons:

1. The intermediate kernels are small and do not a�ect the state of the shared

resource.

2. The itermediate kernels have a high coupling with the �rst kernel and so they

do not make much di�erence in the state of the resource.

3. The shared resource is so large that it can handle the needs of multiple kernels

without degrading performance. The level-two cache is a good example of this since

it can hold data structures as large as 4 Mbytes. The improvement in BT relied on

this fact to �t two data structures in the level-two cache by relocating them in the

cache.

6 GEISLER AND TAYLOR

Recall the initial de�nition of the coupling parameter was

cij =
performance together

combined isolated performances
(1)

The key to reformulating the equation to account for non-adjacent kernels is to

keep the ratio semantics the same. The numerator is the performance of the kernels

run together, and the denominator is the performance one would expect to result if

there was no interaction between the kernels. The new coupling parameter retains

this relationship in the following manner:

We de�ne S as the set of kernels to be measured. We measure the performance of

the kernels independently (pk for every kernel k 2 S), and the performance of the

kernels together (pS) to compute the coupling parameter (cS). Finally, we must

de�ne some function F such that F
k2S

(k) de�nes the performance of the kernels

with no interaction. The equation becomes

cS =
pS
F
k2S

(k)
(2)

In the case of cache misses, we expect kernels with no interaction to perform

as the sum of the individual kernels, so we set F = �. Thus the equation for

the coupling parameter when measuring the interactions of kernels for the cache is

cS = pSP
k2S

pk
. If we reconsider the two adjacent kernels case, we set S = fi; jg,

and the following hold true:

� pS � pij

�
P

k2S pk = pi + pj

� cS � cij

Therefore, we have an equation that retains the original de�nition but expands to

multiple non-adjacent kernels.

2.3. Machine Description

For all of our experiments, we used the SGI Origin2000 at Northwestern Uni-

versity in the Center for Parallel and Distributed Computing. It is an eight way

symmetric multiprocessor, but we only use one processor. Each processor is a 64

bit chip running at 195 MHz capable of 390 M
op/s (2
op/s per cycle) [10]. It

has 64
oating point registers and 64 integer registers. The machine has separate

level-one instruction and data caches, but a uni�ed level-two cache. Each level one

cache is 32 Kbytes with two-way set associativity. The instruction cache has a line

size of 64 bytes, while the data cache line size is 32 bytes. The 4 Mbyte level-two

cache is two-way set associative with a 128 byte line size. The total main memory

is 1 Gbyte in size.

2.4. Kernel Measurements

Each of the applications were divided into an initialization kernel and computa-

tion kernels. The initialization kernel contained all the code needed to set up the

PERFORMANCE COUPLING CASE STUDIES 7

correct data values for the computational kernels. The structure of the benchmarks

analyzed in this paper is such that the initialization section occurs once, outside of

the loop around the computational kernels.

The number of cache misses of the initialization kernel (pinit) in isolation was

measured using the performance counters in hardware. Next, the number of cache

misses for the initialization kernel and the computational kernel i (pinit+i) was

measured since the execution of the kernel often depends on the data being valid

(e.g., random
oating point values would produce NaNs and hardware traps not

found in any run of the code). The value for pi was then computed as pi =

pinit+i � pinit.

To get an accurate measurement of the cache misses, we measured pi, pj , and

pij inside the loop that surrounds the computational section. The cache misses for

pi consists of the initialization kernel followed by a loop containing only kernel i.

This is consistent with what is done when a kernel is taken out of an application

and optimized. The same applies to measuring the cache misses for pj . In the

case of pij , the measurement consists of the initialization kernel followed by a loop

containing kernel i and kernel j. This measurement strategy does not contain any

cache
ushes, which can arti�cially produce kernels with coupling values of 1.0.

3. SIMPLE EXAMPLE

To illustrate the ideas behind the coupling parameter and verify the model, we

use a synthetic program with two kernels that generate speci�ed data streams. The

synthetic program consists of two kernels that accesses memory with a stride of one.

For all the programs in this section, we used code to implement the pseudocode in

Algorithm 3.1.

Algorithm 3.1 Simple Example pseudocode

sizeA size of �rst array

sizeB size of second array

offsetB second array start - �rst array start

for i 1 to 400 do

kernel 1:

for j 1 to sizeA do

touch memory at location j

end for

kernel 2:

for j 1 to sizeB do

touch memory at location j +Boffset

end for

end for

It is very easy to predict the number of misses because we know the exact access

patterns for the program and the cache characteristics of the machine, which can

be combined to form a prediction in the following manner. For arrays smaller than

the cache, the number of misses is the number of misses needed to pull the array

into the cache, or array size

cache line size
, and for arrays larger than the cache, each cache

8 GEISLER AND TAYLOR

line must be refetched because it was
ushed by another array location, thus the

total number of misses are number of accesses

cache line size
.

To illustrate the predictability of the synthetic program, we ran a number of

experiments to measure the �rst level cache misses for the kernels with array sizes

of 4 Kbytes to 512 Kbytes. The runs ran with sizeB from Algorithm 3.1 set to 0,

so only kernel 1 was measured. Each array element is four bytes. The results are

given in Table 1 for array sizes larger than or equal to 32 Kbytes. The hardware

counters do not generate interrupts until at least 2,053 cache misses occur, and the

predicted number of misses for the array sizes smaller than 32 Kbytes is less than

2053.

The predicted column is computed as described previously. The last column is

the relative error of the predicted value. By observing the �nal column, we can

see that the synthetic program performs as predicted. The only case where the

program does not perform as predicted is 32 Kbytes. The reason for this is a

small, but noticeable system overhead. The prediction expects the entire array

to stay in the cache, but due to looping overhead, hardware interrupts, and other

applications running (e.g., daemons), this prediction is overly optimistic. These

additional overheads consist of 1,408 bytes per iteration, resulting in 44 misses per

iteration or 17,600 misses during four hundred iterations. This was con�rmed with

two independant tests.

After measuring each kernel in isolation, experiments were conducted to measure

the synthetic program, involving the two kernels, with various array sizes. A cou-

pling value is generated for each run. We use three sets of experiments to illustrate

the concept of the coupling parameter. The �rst experiment considers the kernels

accessing arrays with the same starting address (Boffset = 0), but di�erent sizes

(sizeA 6= sizeB). The last two experiments demonstrate how the coupling parame-

ter changes when the starting address of the arrays are changed. The measurements

performed for veri�cation, given in Table 1, are used as the isolated values (pi and

pj) in the coupling parameter calculations for the experiments. Tables 2-5 contain

the results of combining the kernels, represented as the misses attributed to each

kernel. The value of pij is the misses for the entire algorithm.

The results from the �rst experiment are given in Tables 2 (a) and (b). The

�rst column identi�es the kernel pair. The second column gives the cache misses

for the �rst kernel, and the third column for the second kernel. The two columns

can be compared to the measured values in Table 1 to identify if the cache misses

increased (destructive coupling) or decreased (constructive coupling) when the two

kernels were executed together as compared to when the two kernels were executed

individually.

In Table 2 (a), the misses for kernel two (128 Kbytes) decreased as compared

to Table 1; however, the misses for kernel one (sized 4 Kbytes through 32 Kbytes)

increased. When executed in isolation, the �rst kernel is able to load the entire array

into the cache during the �rst iteration, resulting in no misses during the remaining

iterations. When the �rst kernel is executed with the second kernel, the �rst kernel

must reload the data into the cache during each iteration because the second kernel

ushes the cache every iteration, causing destructive coupling. Conversely, the

second kernel when run in isolation always reloads the array into the cache. When

run with the �rst kernel, however, the second kernel can access the array that the

PERFORMANCE COUPLING CASE STUDIES 9

TABLE 1

Level one cache misses

Array Predicted Measured Relative

Size Error

512 Kbytes 6,553,600 6,555,229 -0.00024850

256 Kbytes 3,276,800 3,276,588 0.00006470

128 Kbytes 1,638,400 1,640,347 -0.00118694

64 Kbytes 819,200 817,094 0.00257742

32 Kbytes 1,024 18,477 -0.94457974

TABLE 2a

Kernels exhibiting coupling

Kernels Kernel 1 Kernel 2 Coupling

misses misses Parameter

4 Kbytes) 128 Kbytes 57,484 1,582,863 1.0

8 Kbytes) 128 Kbytes 626,165 1,014,182 1.0

16 Kbytes) 128 Kbytes 427,024 1,211,270 0.99874843

32 Kbytes) 128 Kbytes 254,572 1,412,464 1.00495049

TABLE 2b

Kernels not exhibiting coupling

Kernels Kernel 1 Kernel 2 Coupling

misses misses Parameter

64 Kbytes) 128 Kbytes 819,147 1,638,294 1.0

128 Kbytes) 128 Kbytes 1,638,294 1,638,294 0.99874843

256 Kbytes) 128 Kbytes 3,280,694 1,634,188 0.99958246

512 Kbytes) 128 Kbytes 6,553,176 1,642,400 1.0

10 GEISLER AND TAYLOR

�rst kernel has already loaded into the cache causing a decrease in the number of

misses, or constructive coupling. In this example, the coupling parameter remains

at 1.0 because the constructive coupling (the size of kernel one's array reused by

kernel two) is exactly the same as the destructive coupling (the size of kernel one's

array that must be reloaded into the cache), thereby cancelling each other. Hence,

the coupling parameter measures e�ective performance. In Table 2 (b), the misses

for both kernels remained about the same as the isolated execution given in Table 1.

Therefore, as expected, the coupling parameter is approximately 1.0.

The second experiment explores the impact of moving the starting address of

the array such that the data left in the cache by the second kernel is immediately

accessed by the �rst kernel on the next iteration (�sizeB < Boffset < 0). We

expect this alignment to produce constructive coupling by reducing the number of

misses of the �rst kernel. The results are given in Table 4.

In Table 4, the misses for kernel one (sized 64 Kbytes through 512 Kbytes) de-

creased as compared to Table 1. When run in isolation, kernel one was forced to

reload its array into the cache during each iteration. By reusing the data left in the

cache by kernel two, kernel one does not incur as many cache misses causing con-

structive coupling. Since there is no destructive coupling to o�set the constructive

coupling, the coupling parameter is less than 1.0. As the size of kernel one increases,

however, the coupling parameter increases from 0.85380116 to 0.95591182, since the

amount of reuse become a smaller percentage of the total number of accesses.

The coupling values below 1.0 for the second experiment is very signi�cant. We

have not altered either kernel to change the number of cache misses when run in

isolation. The only reason for the decrease in cache misses in kernel one is due

to kernel two loading the data that kernel one needs. This coupling can only be

measured when they are executed together.

The last experiment also looks at the impact of moving the starting address of

the array that the �rst kernel accesses; the address, however, is set such that the

data accessed by the two kernels do not overlap (Boffset > sizeA). This \mis-

alignment" can only cause destructive coupling by causing extra misses, since the

two kernels will never share data.

In Table 5, the misses for kernel one increased as compared to Table 1. Unlike

when run in isolation, kernel one is forced to reload all of its data into the cache

during each iteration causing destructive coupling. In addition, the second kernel

continues to reload all of its data into the cache during every iteration. Since

there is no constructive coupling to balance the destructive coupling, the coupling

parameter is greater than 1.0 and increases as the size of kernel one increases since

kernel one must reload more data as its size increases.

The coupling values above 1.0 for the third experiment is another signi�cant

result. Once again, we have not altered either kernel to produce more misses when

run in isolation. The only reason for the increase in cache misses is due to the

interference produced when both kernels are run together. When coupling the

results of the previous experiment and this experiment together, we can see that

both constructive and destructive coupling can occur and that the only way to

measure its existence is to measure the performance of kernels together.

PERFORMANCE COUPLING CASE STUDIES 11

4. CASE STUDIES

In this section we describe four examples for which the coupling parameter was

used to make modi�cations with the applications that resulted in performance

improvements. The �rst example improves the level-one cache misses while the

second improves the level-two cache misses. The third examines coupling when the

kernels that interact do not occur in succession. Finally, the last study looks at an

industrial sized application.

4.1. NPB: Conjugate Gradient

The Conjugate Gradient benchmark from the NAS Parallel Benchmarks [2] solves

the equation Ax = b using an iterative process to search through the solution space.

The main computational complexity occurs during the matrix-vector multiply sec-

tion of the code. We give results for the S class (N = 1400, and 102,200 nonzeros),

but achieve similar results for the W class (N = 7000, and 637,000 nonzeros). Both

sizes take �fteen iterations to converge to the correct solution.

We divide the Conjugate Gradient benchmark into three kernels:

1. Initialization sets up the data structures after randomly generating the non-

zero elements in the sparse matrix.

2. Matrix-Vector Multiplication performs the largest piece of computation that

can have varying numbers of cache misses based on the data structure that stores

the matrix.

3. Remaining Vector Operations performs the rest of the computations needed

to perform the conjugate gradient application and then any cleanup after the ap-

plication is �nished.

We considered three di�erent sparse matrix representations in addition to the

original representation for the matrix-vector multiply kernel:

� CMNS[3] stores the matrix non-zeros by columns.

� SPAR[17] is similar to CMNS, but stores some zeros to facilitates vector pro-

cessing.

� ITPACK[5] stores a compressed matrix whose size is determined by row with

the largest number of nonzeros. It stores zeros for the rows smaller than the largest

row.

� The original representation[2] stores the matrix non-zeros by rows.

The results of measuring the isolated performance of each kernel and the coupling

parameters are given in Figure 1. The node values are the level-one cache misses

and the edge values are the coupling parameters. Initial inspection of Figure 1

immediately rules out the ITPACK representation as the best algorithm because

of its poor performance (nearly four times worse than the other three algorithms),

which is not compensated by a small enough coupling parameter. This leaves

CMNS, SPAR, and the original representation as possibilities. CMNS and SPAR

have destructive coupling with the rest of the code (cij > 1:0), whereas the original

code has negligible impact on the rest of the code (cij = 1:02). If one considers

cache misses only, which is the traditional method, one would select the original

representation or CMNS. The coupling values provide information that can lead to

new insights as described below.

12 GEISLER AND TAYLOR

TABLE 4

Kernels exhibiting constructive coupling (Exp. 2)

Kernels Kernel 1 Kernel 2 Coupling

misses misses Parameter

64 Kbytes) 128 Kbytes 457,819 1,640,347 0.85380116

128 Kbytes) 128 Kbytes 1,276,966 1,640,347 0.88923654

256 Kbytes) 128 Kbytes 2,917,313 1,642,400 0.92734864

512 Kbytes) 128 Kbytes 6,193,901 1,640,347 0.95591182

TABLE 5

Kernels exhibiting destructive coupling (Exp. 3)

Kernels Kernel 1 Kernel 2 Coupling

misses misses Parameter

4 Kbytes) 128 Kbytes 53,378 1,636,241 1.03003754

8 Kbytes) 128 Kbytes 102,650 1,640,347 1.06257822

16 Kbytes) 128 Kbytes 203,247 1,642,400 1.12515644

32 Kbytes) 128 Kbytes 410,600 1,640,347 1.23638613

FIG. 1. Conjugate gradient coupling graph

1.00

1.00

1.00

Original
matvec:

CMNS
matvec:

ITPACK
matvec:

SPAR
matvec:

initialize remainder

1.02

1.12

0.83

1.11

305897

12886681

12888734

42784520

13104299

1488425

1.00

PERFORMANCE COUPLING CASE STUDIES 13

Next, we studied the code carefully to understand why the various coupling

parameters existed. First, we examined ITPACK since it had such a good coupling

parameter between the matrix-vector multiply and the remaining vector operations.

For ITPACK, the ~w vector is strided through during each iteration of the outside

loop, which corresponds to di�erent columns of the compressed sparse matrix. In

the CG code however, the �rst vector used by the remaining vector operations is the

~w vector (the resultant vector of the matrix-vector multiply operation). ITPACK

and CMNS force the ~w vector to be left in the cache causing fewer cache misses

in the vector updates code. The other data structures only iterate through the

~w vector once (original code) or in a non-strided manner (SPAR). The problem

with ITPACK, however, is that it accesses too many zero entries in the compressed

sparse matrix, causing a signi�cant number of cache misses.

In the CG code, the last data structure used by the remaining vector operations

before the matrix-vector multiply is the ~p vector (the multiplier vector of the matrix-

vector multiply operation). Both ITPACK and the original code access ~p in a non-

strided manner that bene�ts from having ~p in the cache. CMNS and SPAR only

iterate through the ~p vector once, causing only the �rst few accesses of ~p to hit the

cache before ~p is
ushed by other accesses in the matrix-vector multiplication.

The above characteristics suggest a code for matrix-vector multiply such that the

�rst part uses ~p frequently (to take advantage of ~p being left in the cache by the

remainder of the code) and the latter part strides through ~w to leave ~w in the cache

to be used by the remainder of the code. This was achieved by splitting the sparse

matrix, A, in half. The �rst N=2 columns of the matrix were stored row-wise, using

the original data structure. The second N=2 columns of the matrix were stored

column-wise using CMNS. Hence the hybrid data structure does not store any zero

entries.

The new algorithm resulted in 12,898,999 misses for the matrix-vector multiply

and a coupling parameter of 1.0. The number of misses is in the range of original and

CMNS, but the coupling is better. The reduction in coupling for the new algorithm

is enough such that the new algorithm has 17,451 fewer total cache misses (1% less)

than the original data structure.

Also, we explored the e�ect of the location of the split in matrix A on the coupling

parameter. We studied six splits and the coupling parameters associated with them.

The results are in Table 6. The split identi�es the fraction of the matrix that is

stored row-wise followed by the fraction of the matrix that is stored column-wise.

As can be seen, the 15/16,1/16 split produces the lowest coupling parameter and

the 31/32,1/32 split produces the largest. The coupling reduces as the fraction of

the matrix is stored row-wise. This makes sense since only a few columns need

to be retrieved to put the ~w vector into the cache for the remainder of the code

while many rows may take advantage of the ~p vector being left in the cache. The

15/16,1/16 split provides this advantage best. This split reduces the number of

cache misses by 197088, or 1.3% over the original code.

4.2. NPB: Block Tridiagonal

The Block Tridiagonal Benchmark (BT) from the NAS Parallel Benchmarks [2]

uses an implicit algorithm to solve the 3-D compressible Navier-Stokes equations.

In the BT benchmark, the
ux Jacobians are fully diagonalized resulting in block-

14 GEISLER AND TAYLOR

tridiagonal matrices. The x, y, and z dimensions have been decoupled, so they are

solved separately. The computation proceeds in a two phase manner. The �rst

phase calculates the right hand side consisting of local di�erence stencils only. The

second phase involves solving 5 � 5 systems of equations and multiplying 5 � 5

matrices as part of a specialized Gaussian elimination solver. According to [11],

there is signi�cant data reuse in the BT kernel.

We divided the application into seven kernels:

1. Initialization sets all the initial values for the various matrices, vectors, and

scalars. It reads the input �le to respond to user requests. Finally, it probes the

system for run-time values like number of processors.

2. Copy Faces work done is the phase one computation of the right hand side.

3. X Solve solves the problem in the x dimension.

4. Y Solve solves the problem in the y dimension.

5. Z Solve solves the problem in the z dimension.

6. Add performs a matrix update.

7. Final Cleanup veri�es the solution integrity and cleans up any data structures

along with printing out the results of the computation.

The coupling values for the second level cache using the smallest dataset (12�

12 � 12 that converges in sixty iterations) are in Table 7. The Copy Faces) X

Solve coupling parameter for the second level cache was a high value of 4.92. The

two kernels used approximately 406 Kbytes and 2509 Kbytes in data structures. In

total, this is less than the 4096 Kbytes available from the level-two cache. Thus,

the extra misses occurring at level-two are con
ict misses{not capacity misses. By

printing the addresses of the data structures used in the two kernels, we were

able to determine which ones con
icted with each other. Finally, we changed the

declaration section so the con
icting arrays had di�erent stack addresses. This

modi�cation required no changes to the algorithm. The e�ect of changing the

declarations is similar to that of padding an array without the disadvantage of

adding extra memory.

Interestingly, after the modi�cation the number of misses for the Copy Faces

kernel isolated increased from 2,096 to 16,637 and the number of misses of the X

Solve kernel isolated increased from 12,576 to 32488, but the number of misses for

the coupled kernels dropped from 72,181 to 27772, or 62%. When run with the full

application, we saw a 14% improvement in level-two misses. The change made a

dramatic improvement, but would have been rejected if judged solely on its e�ect

on the individual kernels. This is because of the number of cache hits X Solve got

from Copy Faces with the new variable layout.

Because of the three dimensional layout of the matrix, the second largest coupling

occurs for Y Solve) Z Solve. The layout helps the coupling at X Solve) Y

Solve, but seems to hurt the coupling for Y Solve) Z Solve. Further research

is needed to develop a data structure that gives good cache performance for such

three dimensional data structures.

With both CG and BT, the amount of time spent studying and improving the

code took less than a day because the coupling parameter pointed directly to the

problem area. The improvements presented here were easy to develop with such a

directed focus given by the coupling parameter.

PERFORMANCE COUPLING CASE STUDIES 15

4.3. SpecJVM: 209 db

The Standard Perfomance Evaluation Corporation (SPEC) has produced a set of

eight benchmarks for Java Virtual Machines. It was produced in 1998 to provide a

standard measurement critera for di�erent Java platforms [15]. This benchmark is

used to simulate the performance one would expect to receive when implementing

a full database in Java. The program reads a starting database of 1 Mbyte and

performs actions on that database that it gets from a command �le. During the

execution of the application, 224 Mbytes of objects are allocated. The benchmark

performs nine operations that we identi�ed as basic kernels:

� Add inserts a new record to the end of the database and sets the current pointer

to reference the newly added record.

� Begin sets the current pointer to the �rst record.

� Delete deletes the record that the current pointer references.

� End sets the current pointer to the last record.

� Find locates a record with speci�c criteria and sets the current pointer to

reference it.

� Modify changes the values of the record referenced by the current pointer.

� Next sets the current pointer to the record following the currently referenced

record. This operation does not perform any actions if the current pointer references

the last record.

� Previous sets the current pointer to the record preceeding the currently refer-

ence record. This operation does not perform any actions if the current pointer

references the �rst record.

� Sort arranges the records according to a user-speci�ed �eld. This operation

does not perform any actions if the records are already sorted on the same �eld and

no changes have been made to the database since the last sort.

Certain operations may require other operations to perform correctly (e.g., Find

performs the Sort operation).

The benchmark performs these opertions in a speci�c order to approximate what

a real database would see. We created a synthetic load that performed a much sim-

pler task by minimizing the amount of interactions between kernels. The synthetic

load performed each operation in sequence leading to eight adjacent interactions

since there were nine total kernels (e.g., Add preceeded Find and followed Previ-

ous, leading to two adjacent interactions). We recognized the synthetic load did

not fully represent the typical benchmark input, but thought it would give a �rst

approximation to where some ine�ciencies existed in the code. We performed the

coupling measurements and they all came out � 1:07. The results are in Table 8.

When applying Formula 2 for S = all kernels, we got cS = 2:44587598 for L1 and

cS = 3:33148572 for L2, so we knew there was interaction in the synthetic workload

not being measured.

We began to measure non-adjacent kernels with the results in Table 9. This

indicated End and Delete were having poor coupling since the coupling values

dramtically increased when considering both kernels. We began to look at the code

to identify the source of the problem. The End operation is extremely small in

source code and appears to provide little overhead. However, the two operations

16 GEISLER AND TAYLOR

TABLE 6

Coupling parameters for various hybrid splits

fraction of matrix coupling for

row-wise column-wise Init) MVM MVM , Remain

1/4 3/4 0.99952666 1.00443131

1/2 1/2 1.00048015 0.98511904

3/4 1/4 1.00015651 0.96764705

7/8 1/8 1.00046019 0.98688046

15/16 1/16 1.00030266 0.92162554

31/32 1/32 1.0 1.36863823

TABLE 7

Coupling parameters for BT Level 2 cache

Kernels pi + pj pij cij

Copy Faces) X Solve 14,672 72,181 4.91964285

X Solve) Y Solve 31,964 24,235 0.75819672

Y Solve) Z Solve 45,457 80,827 1.77809798

Z Solve) Add 26,724 24,366 0.91176470

Add) Copy Faces 2,751 3,537 1.28571428

Add) Final 3,537 2,620 0.74074074

TABLE 8

Coupling for synthetic workload of 209 db

Kernels L1 coupling L2 coupling

Begin + Next 0.79411764 0.50310559

Next + End 0.73333333 0.33789954

End + Previous 0.56250000 0.34304207

Previous + Add 0.90588235 0.90069084

Add + Find 1.06298366 1.01060985

Find + Delete 0.98484395 0.98568333

Delete + Modify 0.97701745 1.04830965

Modify + Sort 1.01337928 1.01375173

PERFORMANCE COUPLING CASE STUDIES 17

share a function (set index()) to make sure the records are indexed properly.

Further study discovered that the Java datatypes used to store the record contained

indexing functions, resulting in the set index call being redundant. We removed

the redundant indexing in the code and relied on the indexing internal to the Java

data structure and got the following results: the L1 cache misses decreased by 65%

and the L2 cache misses decreased by 73%. To verify that the modi�cations made

a di�erence on the originally speci�ed workload, we measured the performance of

the original workload and achieved these results: the L1 cache misses decreased by

41% and the L2 cache misses decreased by 25%.

4.4. SpecHPC: Seis

SpecHPC contains several industrial sized applications to measure high-end com-

puting systems. Seis is a data processing application for seismic data [7]. This

application comes with many di�erent prede�ned dataset sizes and is included to

illustrate the coupling values that result in an industrial application. The bench-

mark required signi�cant disk capacity exceeding that available on the experimental

system. Therefore, Seis was only run with the \tiny" dataset available. This dataset

generates between 20 and 100 Mbytes of trace �les while processing.

The results for the Seis application are given in Table 10. The �rst column gives

the coupled kernels. The second column is the sum of the misses for the isolated

kernels. The next column is the number of misses for the coupled kernels, and the

�nal column is the computed coupling parameter. The coupling parameters for

Seis are striking. Only one indicates constructive coupling, and over 75% indicate

very bad destructive coupling. The two highest coupling parameters correspond

to kernels not originally developed for the benchmark (VRFY and RATE). Both

were added by SPEC for veri�cation and measurement purposes respectively. It

can be observed that these kernels do not dominate the execution time and we

can assume that SPEC was not concerned with getting the best performance from

these new kernels. Another factor a�ecting the coupling parameters for Seis is the

granularity di�erences between it and the NPB. Seis uses �le level granularity while

NPB use procedure level granularity. The change in granularity may be a factor

in the destructive coupling since most �les do not share much data. The sharing

typically occurs within �le units.

We created a graph like Figure 2 for each kernel. Each bar represents a kernel

being added to the string of kernels run. The height of the bar is the number of

misses in DGEN when that kernel is added to the kernels. The �rst bar is the

number of misses in DGEN when VSBF is run. Obviously, there are not very many

misses in DGEN since none of its kernels are run (some misses do occur during

initialization accounting for a non-zero value). The second bar is the number of

misses when GEOM is added so that both VSBF and GEOM are running. Again,

very little misses are measured. The third bar has a large jump because that is

when DGEN is added to the kernels run (now VSBF + GEOM + DGEN). This

correlates to the number of misses in DGEN run in isolation. Notice the number

of misses in DGEN when FANF is added. It is larger than any other bar. This

indicates that FANF has negative coupling with DGEN. This is con�rmed by the

measurements in Table 10. The bar is lower for later kernels indicating that FANF's

destructive coupling is overcome by constructive coupling by the other kernels. We

18 GEISLER AND TAYLOR

TABLE 9

Non-adjacent coupling

Kernels L1 coupling L2 coupling

End + Previous + Add + Find 2.97032450 0.98574802

Previous + Add + Find + Delete 2.41850009 1.03921043

Add + Find + Delete + Modify 2.32512692 1.02006764

Find + Delete + Modify + Sort 2.50096665 0.97766960

End + Previous + Add + Find + Delete 4.59245463 7.66919864

Previous + Add + Find + Delete + Modify 1.05384983 1.05741370

Add + Find + Delete + Modify + Sort 1.01668185 1.00578967

End + Previous + Add + Find + Delete + Modify 5.02989208 7.66002490

Previous + Add + Find + Delete + Modify + Sort 1.02090840 1.01790079

TABLE 10

Seis level-one coupling parameters

Kernels pi + pj pij cij

VSBF) GEOM 45,166 129,339 2.86363636

GEOM) DGEN 585,105 829,412 1.41754385

DGEN) FANF 562,522 1,328,291 2.36131386

FANF) DCON 192,982 800,670 4.14893617

DCON) NMOC 322,321 443,448 1.37579617

NMOC) PFWR 158,081 484,508 3.06493506

PFWR) VRFY 36,954 394,176 10.66666666

VRFY) RATE 34,901 566,628 16.23529411

RATE) PFRD 131,392 650,801 4.95312500

PFRD) DMOC 3,436,722 3,208,839 0.93369175

DMOC) STAK 4,459,116 4,496,070 1.00828729

STAK) M3FK 1,233,853 3,845,269 3.11647254

M3FK) MG3D 336,223,916 343,312,925 1.02108419

P
E
R
F
O
R
M
A
N
C
E
C
O
U
P
L
IN

G
C
A
S
E
S
T
U
D
IE
S

1
9

F
I
G
.
2
.

D
G
E
N

m
isses

'*(1 /� PLVVHV

�

��

��

��

��

��

��

��

��

Y
VE

I
J
H
R
P

G
J
H
Q

ID
Q
I

G
FR

Q

Q
P

R
F

Y
UI
\

UD
WH

S
IZ

U

S
IU
G

G
P

R
F

VW
D
N

P
�
IN

P
J
�
G

NHUQHO

PLVVHV E\ IXQFWLRQV

FDOOHG E\ PRGXOH

PLVVHV LQ PRGXOH

20 GEISLER AND TAYLOR

explored the destructive coupling with FANF and DGEN so that we could remove

it and take advantage of the constructive coupling with the other kernels.

Study of FANF and DGEN concluded that the FFTs (forward and reverse) that

FANF performs were pushing the data out of cache that DGEN was using. In

general, this data movement cannot be changed because the FFTs are critical to

the FANF algorithm. FANF, however, was not performing the FFT in an optimal

manner for cache use.

When FANF is called, it is given a pointer to the data it needs. It then calls

the forward FFT and points to a temporary location which the FFT should return

the values in. The FFT, then copies the data to a third location to perform the

work before copying the results to the destination location. FANF then performs

a �lter operation in the temporary location before calling the reverse FFT. The

result location of the reverse FFT is the location of the real data, but before the

data is copied there, the reverse FFT is performed in a fourth temporary location.

This is shown in Figure 3.

By performing as much of the FANF work inplace as possible instead of using

temporary arrays, we were able to improve the number of L1 cache misses of FANF

by over 18% and the overall application by over 1%. Much of Seis is designed

similarly to FANF and performing a similar optimization to all the kernels should

improve the performance of the application by 5-10%.

5. RELATED WORK

Allan Snavely de�ned a similar concept as symbiosis [14]. His work studies the

interaction of two separate programs on a multithreaded machine instead of inter-

action within an application. The equations used to quantify interaction uses a

similar ratio of isolated and simultaneous execution times. His work in [13] indi-

cates that dynamic scheduling of multiple highly tuned applications still produces

better e�ciency on the Tera MTA. Our work focuses, however, on improving the

performance of a single application.

Rafael Saavedra did much work characterizing various benchmarks [8] by decom-

posing them into high-level Fortran statements. He then counted the number of

times each statement occurred in the execution of the program. By measuring the

execution time of each statement on various target machines, he was able to predict

the total execution time of the benchmarks by multiplying the statement execution

times by the number of times it occurred and then summing that product over all

statements. Rafael's work demonstrated that measurements of high level constructs

can result in accurate predictions (over 50% of the predictions had less than 10%

error) if cache or compiler optimizations are not used.

In [9], he added terms in his model to account for cache e�ects. This improved

the accuracy of his model to more than 80% of the predictions with less than 10%

error. Our work complements Rafael's work in quantifying and understanding the

interaction between kernels.

Many metrics already exist to measure performance of serial and parallel pro-

grams. The most important is execution time. Some metrics measure speci�c

operations, such as instructions, cache misses, or execution pipeline stalls. These

metrics do not relate the operations from one kernel to another, however. Others,

such as speedup, sizeup [16], and measured serial fraction [4] attempt to relate some

PERFORMANCE COUPLING CASE STUDIES 21

theoretical performance to the observed performance, but they are based on the full

program resulting in one value per application; hence coupling is not represented.

While the coupling parameter does relate a theoretical performance to an observed

performance (kernels in isolation summed together vs. kernels run together), a sin-

gle application is represented by multiple coupling parameters (one for each kernel

interaction).

Larry Carter et. al. have studied the performance impacts of hierarchical tiling

[6]. Their technique focuses on improving a single kernel within an application,

however the additional information that the coupling parameter provides indicates

that the technique would be useful across kernels. The coupling parameter can

indicate which cross-kernel tilings should be pursued and which should be ignored.

6. SUMMARY

In this paper, we de�ned the coupling parameter for adjacent kernels (cij =
pij

pi+pj
) and generalized it to non-adjacent kernels (cS = pS

F
k2S (k)

). This allowed

us to quantify the interaction between kernels in an application. We measured

the coupling parameter for four applications for the �rst two levels of the memory

hierarchy. Using the coupling parameter, we were able to develop a new data

structure for the conjugate gradient benchmark that improves level one cache misses

1%. Also, we improved the level-two cache misses for BT by 14%. Next, we studied

the e�ects of coupling on non-adjacent kernels. 209 db provided 41% improvement

when removing the redundant data structure. Finally, Seis indicated that a large

range of coupling values exists on industrial applications with a small improvement

demonstrated.

The improvements above were achieved through various means:

� Improved data structure for CG resulted in better interaction between the

matrix-vector multiply and the remaining vectore operations.

� Changed memory location in BT reduced the level-two con
ict misses without

changing the algorithm.

� Removed redundant operations in the Java code to take advantage of the values

stored internally by the native data structure.

� Optimized the cache usage of seis by removing temporary storage to reduce

cache pollution by the temporaries.

All of these improvements were pointed to by the coupling parameter. Without

the assistance of the coupling parameter, these improvements would have ranged

from not investigated due to no known problem (CG and 209 db) to too di�cult

to diagnose (Seis). In all four cases, the coupling parameter quickly led us to hone

on to an ine�ciency that could be improved.

REFERENCES

1. G.M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of AFIPS 1967 Spring Joint Computer Conference, pages 483 {

485, April 1967.

2. David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice

Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA, December

1995.

22 GEISLER AND TAYLOR

3. I.S. Du�, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Clarendon Press,

Oxford, 1986.

4. Alan H. Karp and Horace P. Flatt. Measuring parallel processor performance. Communications

of the ACM, 33(5):539{543, May 1990.

5. D.R. Kincaid, J.R. Respess, D.M. Young, and R.G. Grimes. ITPACK 2C: A FORTRAN

package for solving large sparse linear systems by adaptive accelerated iterative methods.
ACM Transactions on Mathematical Software, 8:302{322, 1982.

6. Nicholas Mitchell, Karin H�ogstedt, Larry Carter, and Jeanne Ferrante. Quantifying the multi-
level nature of tiling interactions. International Journal of Parallel Programming, 1998.

7. Charles C. Mosher and Siamak Hassanzadeh. ARCO seismic processing performance evaluation
suite: Seis 1.0 users's [sic] guide. Technical report, ARCO Exploration and Technology and

Sun Microsystems, October 1993.

8. Rafael H. Saavedra and Alan Jay Smith. Analysis of benchmark characteristics and benchmark

performance prediction. Technical Report CSD-92-715, University of California, Berkeley,

1992.

9. Rafael H. Saavedra and Alan Jay Smith. Measuring cache and TLB performance and their ef-

fect on benchmark run times. Technical Report CSD-93-767, University of California, Berkeley,

1993.

10. Subhash Saini and David Bailey. Hot chips for high performance computing. In SuperCom-

puting Tutorials, November 1996.

11. William Saphir, Alex Woo, and Maurice Yarrow. The NAS parallel benchmarks 2.1 results.

Technical Report NAS-96-010, NASA, August 1996.

12. Anand Sivasubramaniam, Umakishore Ramachandran, and H. Venkateswaran. A comparative

evaluation of techniques for studying parallel system performance. Technical Report GIT-CC-

94/38, Georgia Institute of Technology, September 1994.

13. Allan Snavely and Larry Carter. Symbiotic jobscheduling on the Tera MTA. In Proceedings of

Third Workshop on Multi-Threaded Execution, Architecture, and Compilers, January 2000.

14. Allan Snavely, Nick Mitchell, Larry Carter, Jeanne Ferrante, and Dean Tullsen. Explorations

in symbiosis on two multithreaded architectures. In Proceedings of Second Workshop on Multi-

Threaded Execution, Architecture, and Compilers, January 1999.

15. SPEC, Inc. Results at http://www.spec.org. 2000.

16. Xian-He Sun and John L. Gustafson. Toward a better parallel performance metric. Parallel
Computing, 17:1093{1109, 1991.

17. Valerie E. Taylor, Abhiram Ranade, and David G. Messerschmitt. SPAR: A new architecture
for large �nite element computations. IEEE Transactions on Computers, 44(4):531{545, April

1995.

! Please write \titlerunninghead{<(Shortened) Article Title>} in �le ! 23

FIG. 3. Data movement in FANF

other memory DATA
FANF

temporaries

FFT
temporaries other memory

